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Abstract 

Ischemic heart diseases (IHD) is a major cause of cardiovascular death and disability 

worldwide. IHD is characterized by an imbalance between cardiac oxygen supply and demand 

predominantly due to obstruction of coronary arteries. Activation of the innate immune system 

and the consequent inflammatory response is an important contributor in the pathogenesis of 

IHD. An excessive and uncontrolled inflammatory response contributes to the adverse cardiac 

remodeling and fibrosis, making inflammation an important therapeutic target for improving 

outcomes in the cascade of IHD. While there are many discrepancies in the literature, evidence 

from both bench and clinical research demonstrate the beneficial effects of increased n-3 

polyunsaturated fatty acids (n-3 PUFA), eicosapentaenoic acid (EPA) and/or docosahexaenoic 

acid (DHA), toward IHD.  N-3 PUFA, and their metabolites, have been demonstrated to 

modulate different aspects of the immune system, including the expression of adhesion 

molecules, cytokines, leucocyte chemotaxis and inflammasome formation. In this article, we 

provide a brief overview of the role of the innate immune system in IHD and focus on the 

immunomodulatory effects of n-3 PUFAs and their biologically active metabolites.  

Key words: N-3 polyunsaturated fatty acids; bioactive lipid mediators; innate immune 

system; ischemic heart disease 

 

List of Abbreviations: AA, Arachidonic acid; AAR, Area at risk; ACS, Acute coronary 

syndrome; AHA, American Heart Association; ALA, α-Linolenic acid; ASC-1, Apoptosis-

associated speck-like protein containing a CARD-1; CAD, Coronary artery disease; CB2R, 

Cannabinoid receptor 2; CCL, Chemokine ligand; CCR, Chemokine receptor; CHD, Coronary 

heart disease; COX, Cyclooxygenase; CRP, C-reactive protein; CYP, Cytochrome P450; 

CysLTs, Cysteinyl leukotrienes; CVD, Cardiovascular disease; DAMP, Damage- associated 

molecular patterns; DGLA, Dihomo-γ-linolenic acid; DiHDPA, Dihydroxydocosapentaneoic acid; 

DHA, Docosahexaenoic acid; DHEQ, Dihydroxyeicosatetraenoic acid; EDP, 
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Epoxydocosapentaenoic acid; EET, Epoxyeicosatrienoic acid; EEQ, Epoxyeicosatetraenoic 

acid; EP, E prostanoid receptor; EPA, Eicosapentaenoic acid; GPR, G-protein coupled receptor; 

HDoHE, Hydroxy docasahexaenoic acid; HEPE, Hydroxyeicosapentaenoic acid; HETE, 

Eicosatetraenoic acid; HF, Heart failure; HFHC, High-fat/high-carbohydrate;  HMEC, Human 

microvessel endothelial cells; HMGB-1, High mobility group box-1; HpDHA, 

Hydroperoxydocosahexaenoic acid; HpETE, Hydroperoxyeicosatetraenoic acid; HSP, Heat 

shock protein; HUVEC, Human umbilical vein endothelial cells; ICAM, Intracellular adhesion 

molecule; IFN, Interferon; IGF-1, Insulin-like growth factor 1; IHD, Ischemic heart disease; IL, 

Interleukin; IR, Ischemia-Reperfusion; LA, Linoleic acid; LAD, Left anterior descending coronary 

artery; LDL, Low-density lipoprotein; LID, Linggui Zhugan Decoction; LOX, Lipoxygenase; LT, 

Leukotriene; LV, Left ventricle; MaR, Maresin; MCP-1, Monocyte chemoattractant protein-1; MI, 

Myocardial infarction; miR, MicroRNA; MMP, Matrix metalloproteases; MPTP, Mitochondrial 

permeability transition pore; mtDNA, Mitochondrial DNA; NF-kB, Nuclear factor kappa-light-

chain enhancer activated B-cells; NLRP3, NACHT, LRR and PYD domains-containing protein 3; 

PD, Protectin; PG, Prostaglandin; PLA2, Phospholipase A2; PMN, Polymorphonuclear 

neutrophils; PPAR, Peroxisome proliferator-activated receptor; PPCI, Primary percutaneous 

coronary intervention; PUFA, Poly unsaturated fatty acid; ROS, Reactive oxygen species; Rv, 

Resolvin; TAC, Transverse aortic constriction; TAK, TGF-activated kinase; TGF-β, Transforming 

growth factor-β; TIMP, Tissue inhibitor of metalloproteinase; TLR, Toll like receptor; TNF-α, 

Tumor necrosis factor-α; Tx, Thromboxane; VCAM, Vascular adhesion molecule; VSMC, 

Vascular smooth muscle cells. 
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1. What is ischemic heart disease 

Ischemic heart disease (IHD) is the most common type of heart disease and is a leading 

cause of cardiovascular morbidity and mortality worldwide [1-5]. IHD is the term applied to a 

group of closely related syndromes resulting from myocardial ischemia. Ischemia usually arises 

due to the imbalance or mismatch between myocardial demand and supply by the oxygenated 

blood. Beside insufficiency of oxygen, ischemia also comprises reduced nutrient availability and 

impaired removal of metabolic waste products. Several factors can contribute to increasing 

cardiac oxygen demand such as increased heart rate, contractility and elevated blood pressure. 

While compromised perfusion of the heart is usually attributed to decreased coronary blood 

flow, coronary vasospasm or hypotension, as well as reduced hematocrit and blood oxygen 

saturation. In more than 90% of cases, the cause of myocardial ischemia is the reduction in 

blood flow to the heart due to narrowing or even complete obstruction of the coronary arteries 

by excessive lipid accumulation and consequently the formation of atherosclerotic plaque on the 

vessel wall. Therefore, IHD is often termed coronary artery disease (CAD) or coronary heart 

diseases (CHD) interchangeably [6-8].  

Angina pectoris is the most common manifestation of IHD where ischemia is less severe 

and does not cause death of the cardiac muscle, however, it starts to delineate the area at risk 

(AAR) of potential death. If the duration and severity of ischemia is prolonged (more than 20 

minutes) a “wave front” of irreversible cardiomyocyte death throughout the myocardium arises 

and spreads from the subendocardium to the subepicardium, a case known as myocardial 

infarction (MI) [9]. Acute MI often results from sudden interruption of blood flow downstream of 

the blocked vessel due to the rupture or erosion of an unstable atherosclerotic plaque with a 

consequent thrombus formation in coronary arteries. This acute cardiac insult is often referred 

to as acute coronary syndrome (ACS) [10-12]. 
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After MI, early and successful myocardial reperfusion or restoration of blood flow to the 

ischemic myocardium, using either thrombolytic therapy or primary percutaneous coronary 

intervention (PPCI), is the standard therapeutic intervention to rescue viable myocardial tissue, 

reduce infarct size, and decrease acute mortality rates. However, reperfusion itself can 

paradoxically accelerate the death of injured cardiomyocytes, aggravating the damage and 

increasing the incidence of chronic heart failure (HF). This phenomenon termed as ischemia-

reperfusion (IR) injury may account for up to 50% of the final infarct size [13-17] and explain 

why despite optimal myocardial reperfusion, the death rate after an acute MI still approximates 

10% [18]. The mechanisms underlying reperfusion injury are complex, involving multiple factors 

such as mitochondrial dysfunction [19], opening of the mitochondrial permeability transition pore 

(MPTP) [20], generation of reactive oxygen species (ROS) fueled by rapid reintroduction of 

molecular oxygen [21], endoplasmic reticulum stress  [22], calcium overload [20, 23-25], 

endothelial dysfunction and inflammation [26, 27].  The increased injury contributes to the 

further development of MI, which results in marked cardiac remodeling, ultimately leading to 

heart failure [28-31].  A better understanding about the pathophysiology of IHD remains 

important, notably toward the development of more effective therapeutic strategies. 

2. Role of innate immune system in the pathogenesis of ischemic heart disease 

The innate immune system is considered the first line of the body’s defense against 

injury and insult, which is characterized by an ability to detect and respond quickly to both 

invading pathogens and sterile cell stressors. The innate response is triggered by the activation 

of a group of receptors called pattern recognition receptors (PRRs) found on the surface of 

neutrophils, monocytes/macrophages, endothelial cells and cells in the injured tissue. PRRs are 

activated following binding of specific microbial motifs or endogenously generated danger 

signals. Danger signals most commonly stem from cellular debris or intracellular products 

released early from the injured or damaged cells [32-36].  PRR activation quickly initiates an 
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immune response within the insulted tissue and the whole body by triggering the migration of 

additional innate immune cells to the affected site, inducing the production of mediators needed 

for inflammation and repair as well as alerting, instructing and activating the more specific 

adaptive immune response mediated by T and B lymphocytes [37-41]  

Accumulating literature supports the association between the sterile activation of the 

innate immune system and IHD [42-45]. The incidence of infarction in the myocardium activates 

the inflammatory reaction which involves two mechanistically distinct phases, the inflammatory 

phase and the reparatory phase. Death of cardiomyocytes under acute ischemic conditions 

triggers the initial pro-inflammatory response to first remove necrotic cellular debris from the 

infarct zone and start the reparative phase. Reperfusion of the ischemic myocardium contributes 

to tissue loss by accelerating the death of the injured cardiomyocytes exacerbating the pro-

inflammatory response and increasing the size of the infarct zone [34, 46-48]. The early pro-

inflammatory response is followed by a reparative phase involving resolution of inflammation, 

myofibroblast proliferation, wound healing and scar formation [49]. Whether these repair 

mechanisms are beneficial or detrimental to cardiac function is partially dependent upon the 

amount of tissue damage [50]. Accordingly, persistent or extended inflammatory phase 

responses can exaggerate myocardial damage leading to an increase in the infarct size and 

excessive cardiac remodeling [51]. Treatments targeting the innate immune response may 

provide a promising therapeutic strategy for limiting infarct size, ameliorating adverse 

remodeling and improving cardiac function.  In this section we will discuss the role the innate 

immune system has in the pathogenesis and the progression of IHD.  

2.1. Inflammatory response in coronary atherosclerosis  

CAD is a chronic inflammatory fibroproliferative disease characterized by abnormal lipid 

metabolism and buildup within the vascular wall of the coronary arteries associated with a 

potent inflammatory pathophysiological reaction [52-54]. Atherosclerosis is a multistep process 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

7 

 

initiated by subendothelial oxidation of low-density lipoproteins (LDL), followed by infiltration of 

monocytes and their conversion to macrophages and then to lipid-laden foam cells, proliferation 

of vascular smooth muscle cells (VSMCs) and finally secretion of fibrous elements leading to 

the formation of occlusive plaques [53]. The high content of inflammatory cells such as 

neutrophils and monocytes present in the atherosclerotic plaque are a direct source of many 

pro-inflammatory mediators such as chemokines, cytokines and leukotrienes (LTs), which 

worsen the inflammatory status [52, 54, 55]. Importantly, the inflammatory macrophages 

residing within the blood vessel wall can also release matrix metalloproteases (MMPs) that 

digest the fibrous cap of the atherosclerotic plaque. This leads to plaque rupture and a further 

cascade of inflammatory events with deleterious cardiovascular effects such as thrombi 

formation and coronary artery blockage impeding the blood flow to the heart leading to acute MI 

[56, 57]. 

2.2. Inflammatory response accompanying myocardial infarction 

2.2.1 Activation of PRRs by damage-associated molecular patterns (DAMPs) (early 

signaling) 

Cardiomyocyte cell death resulting from acute ischemic conditions or reperfusion injury 

causes the release of cellular debris and contents, referred to as damage-associated molecular 

patterns (DAMPs, alarmins). Some of these endogenous products can activate the innate 

immune response in adjacent myocardial cells, myofibroblasts, endothelial cells and migrating 

immune cells.  DAMPs include protein signals such as high mobility group box-1 (HMGB1), 

S100 proteins or heat-shock proteins (HSPs) and non-protein signals ATP, mitochondrial DNA 

(mtDNA) and RNA [58-60]. PRRs sense extracellular threats through DAMPs to prime cells for a 

response to potential injurious conditions. Critical PRRs involved IHD are toll-like receptors 2 

and 4 (TLR2 and TLR4), which are present on various cell types including cardiac, endothelial 

and circulating immune cells [34, 35, 50, 61-64]. Binding of DAMPs to TLR2 or TLR4 starts the 
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pro-inflammatory phase by activating NF-κB signaling events. Once activated, NF-κB 

translocates to the nucleus driving the expression and release of pro-inflammatory proteins and 

cytokines including tumor necrosis factor-α (TNF-α), pro-interleukin (IL)-1β, pro-IL-18, IL-6, IL-8, 

CXC chemokines (neutrophil chemoattractants), CC chemokines (monocytes and T-

lymphocytes chemoattractants) and cell adhesion molecules (e.g., vascular cell adhesion 

molecule (VCAM), intercellular adhesion molecule (ICAM) and selectins) [65-69]. These 

mediators promote endothelial activation and permeability, leading to further sequential 

recruitment of neutrophil and monocytes to the injured myocardium [70, 71] (Fig. 1).  

Acute MI can lead to an exaggerated activation of the inflammasome pathway spreading 

an inflammatory surge to the rest of the myocardium impacting cardiac function. Binding of 

DAMPs to TLRs or NOD-like receptors (NLR) on cardiac fibroblasts, infiltrating leucocytes and 

cardiomyocytes will activate the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) 

inflammasome, a main pro-inflammatory mediator in the setting of MI [72-74]. NLRP3 

inflammasomes are large multiple protein complex found in the cytosol that consists of a sensor 

protein (NLR), an adaptor protein (apoptosis-associated speck-like protein containing a CARD-1 

(ASC-1)) and a zymogen (procaspase-1) [75].  Once aggregated, NLRs and ASC-1 mediate the 

cleavage and activation of caspase-1.  Active caspase-1 then induces the conversion of pro-IL-

1β and pro-IL-18 to mature IL-1β and IL-18 respectively, which induces pyroptosis or caspase-1 

mediated cell death [74, 76-83]. The release of IL-1β from cardiac fibroblasts, in response to MI 

requires two signals: (1) the transcription of pro-IL-1β by the TLR-NF-κB pathway, and (2) the 

activation of pro-IL-1β to its mature form by the NLRP3 inflammasome.  IL-1β triggers the 

release of other cytokines and chemokines, which recruit and activate inflammatory cells such 

as neutrophils and monocytes. In general, IL-1β is considered a major cytokine mediating the 

pro-inflammatory response post-MI [84, 85] (Fig. 1).  

2.2.2 Recruitment of different leukocyte populations  
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The infiltration of the injured myocardium by inflammatory leukocytes is a well-organized 

process with the chronological recruitment of neutrophils, monocytes and macrophages that has 

been well documented [86, 87]. The pro-inflammatory and reparative roles of these immune 

cells in the setting of IHD may have different effects attributable to the functional variation and 

the amount time the immune cells reside in the injured tissue. As such, the role of leukocytes in 

the pathogenesis of IHD and post-MI healing may be viewed as a double-edged sword. For 

example, monocyte/macrophage recruitment is essential for post-MI infarct healing; however, 

uncontrolled and extensive infiltration may worsen the injury or impair reparative capabilities [88, 

89]. Thus, the challenge is how to ameliorate the detrimental effects of these cells, while 

maintaining their beneficial reparative roles.   

2.2.3 Neutrophils (1-3 days post-MI) 

Neutrophils are the first immune cells to infiltrate the injured myocardium post-MI.  They 

are recruited from the bone marrow within the first hours of injury and reach a peak after one 

day before slowly declining [90-92]. Cytokines and chemokines, such as cytokine-induced 

neutrophil chemoattractant 1 (CINC-1/CXCL1), LTB4 and IL-8 (CXCL8), produced early in the 

inflammation cascade promote endothelial activation, permeability and neutrophil recruitment to 

the infarcted area.  The polymorphonuclear neutrophils (PMNs) enter the insulted myocardium 

by adhering to and rolling on endothelial cells by binding to the cell adhesive molecules P-

selectin, E-selectin, VCAM, and ICAMs expressed on activated endothelial cells [70]. Once in 

the injured myocardium, neutrophils start to remove necrotic cells and tissue debris; however, 

activated neutrophils can release high levels of ROS, DAMPs, proteolytic enzymes and secret 

chemotactic factors further aggravating tissue damage. Excessive neutrophil infiltration and/or 

their delayed removal may exacerbate myocardial injury by prolonging the pro-inflammatory 

response [93-96].  Evidence from clinical studies suggests high levels of neutrophils and their 

products are correlated to the severity of IHD and infarct size post-MI [97].  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

10 

 

2.2.4 Monocytes (3-5 days post-MI) 

Nahrendorf et al. demonstrated a sharp increase in the number of inflammatory 

monocytes found in blood within the first few hours after coronary blockade reaching a peak 3-5 

days post-MI in the injured heart [98].  Monocytes are recruited to the injured myocardium by 

the increased cardiac and endothelial expression of the chemoattractant chemokine monocyte 

chemoattractant protein-1 (MCP-1, also called chemokine ligand 2 (CCL2)) and neutrophil-

derived granular protein cathelicidin [99-101].  Binding of monocytes and macrophages to CCL2 

through their cell surface receptor CC chemokine receptor 2 (CCR2) can induce the expression 

of other cytokines, MMPs and transforming growth factor-β (TGF- β) causing further cardiac cell 

death and ventricular dysfunction contributing to injuries [102-104]. IL-1β is an important stimuli 

of monocyte recruitment by triggering its production in the spleen and bone marrow following 

ischemic injury [105-107].  Monocytes and their lineage-descendant macrophages contribute to 

the resolution of the inflammatory response and ventricular remodeling, yet excessive 

monocytosis in the post-MI inflammatory period is deleterious for long-term cardiac function [87, 

108, 109].    A large influx of monocytes can contribute to the initial cardiac injury and participate 

in the release of several inflammatory mediators, proteolytic enzymes and increased ROS 

production, exacerbating the pro-inflammatory phase.   

2.2.5 Macrophages (5-7 days post-MI) 

During the first days post-MI, the majority of cardiac macrophages are derived and 

replenished from inflammatory monocytes differentiating into classical M1 inflammatory 

macrophages that clear the cellular and matrix debris through efferocytosis [110]. Subsequently, 

alternatively activated or reparatory M2 macrophages are formed to promote resolution of 

inflammation and contribute to wound healing [98, 111, 112]. Controlled recruitment of 

macrophages to the injured myocardium is essential for wound healing and tissue repair as 

defective macrophage clearance of necrotic or apoptotic cells can lead to impaired collagen 
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deposition and scar formation, causing adverse left ventricular remodeling [113-116].  Excessive 

or prolonged residence of inflammatory M1 macrophages in the infarct myocardium can extend 

the inflammatory phase and consequently expand the infarcted area, delaying the reparative 

phase and formation of scar tissue mediated by M2 macrophages and thus aggravates the 

adverse cardiac remodeling [88, 89, 117].  

2.3. Persistent post-MI adverse inflammatory response and LV remodeling 

Cardiac remodeling and progression to HF following MI is dependent on the extent and 

persistence of the inflammatory response. Following MI, an excessive pro-inflammatory 

response may induce geometric and functional changes in the LV, which includes hypertrophy 

of the non-infarcted segments and dilatation of the infarcted segments worsening cardiac 

function [118]. Modulating the persistent or chronic inflammatory response can limit adverse LV 

remodeling. 

During the healing process, the infiltrated macrophages and fibroblasts are responsible 

for the sustained upregulation of TGF-β, a key mediator in mediating LV remodeling, with its 

downstream effectors in the myocardium promoting fibrosis and remodeling of the injured 

cardiac tissue [119, 120]. Active TGF-β binds to its receptor (TβR) at the cell surface and 

propagates downstream intracellular signals through Smad proteins [121, 122]. Expression of 

the stimulatory Smad 2, 3, and 4 proteins were shown to be significantly upregulated under MI 

conditions, while expression of the inhibitory Smad7 is decreased in myocardial scars [123, 

124]. The activation of the Smad3 signaling pathway mediates extracellular matrix protein 

synthesis and deposition in the non-infarcted myocardium as well as promotes matrix 

preservation through increased expression of tissue inhibitors of metalloproteinases (TIMP). 

TGF-β also activates TGF-β-activated kinase 1 (TAK1), a potent mediator of cardiomyocyte 

hypertrophy [119, 125]. Overall, TGF-β-mediated effects contribute to both excessive matrix 
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deposition and pathological hypertrophy post-MI, leading eventually to dilative cardiac 

remodeling and severe cardiac dysfunction.  

3. Modulation of the innate immune response is cardioprotective 

Increasing evidence in the literature demonstrates modulating the innate immune system 

can limit adverse consequences resulting from ischemic injury. Genetic or pharmacological 

inhibition of TLR2 or TLR4 was demonstrated to blunt the excessive inflammatory response 

post-MI and attenuate infarct expansion.  For example, TLR4-deficient mice sustained smaller 

infarctions and exhibited less inflammation after myocardial IR injury [126].  Additionally, post-MI 

hearts in TLR2−/− mice performed better than WT counterparts and were protected against 

endothelial dysfunction [127]. Interestingly, impaired TLR2 or TLR4 signaling prevented adverse 

cardiac remodeling and resulted in preserved cardiac function and geometry following MI [128, 

129].  Very recently, Yuan et al., showed vaspin, a visceral adipose tissue-derived serine 

protease inhibitor adipokine, limits the infarct size post IR injury via inhibiting TLR4/NF-κB 

signaling pathway both in vivo and in vitro [130]. In addition, it has been demonstrated that 

atazanavir, an antiretroviral medication, protects against MI-induced cardiac fibrosis through 

blocking HMGB1/TLR9 inflammatory signaling pathway in rat hearts [131]. Tanshinone IIA, the 

main effective component of the Chinese medicine Danshen, has also shown to attenuate MI 

progression and prevent LV remodeling through inhibition of TLR4/MyD88/NF-κB signalling 

pathway in an acute MI rat model [132]. 

Targeting the NLRP3 inflammasome signaling pathway to inhibit different components 

(i.e. caspase 1, IL-1β, ASC-1, or NLRP3 protein) has been demonstrated to reduce infarct size 

and preserve cardiac function in different models of MI [80-82, 133-136].  Different models 

support this notion, including evidence demonstrating the cardioprotective effects of 

cannabinoid receptor 2 (CB2R) agonists involves suppression of NLRP3 inflammasome 

activation [137].  While Wang et al., provided evidence the hormone Ghrelin protects the heart 
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against IR injury by inhibiting the TLR4/NLRP3 inflammasome pathway [138].  Other research 

suggests inhibiting CCL2/CCR2 signaling might blunt excessive recruitment of pro-inflammatory 

monocyte/macrophage, promote infarct healing, diminish interstitial fibrosis, prevent detrimental 

remodeling and consequently attenuate contractile dysfunction in the setting of MI [104, 139-

141]. Very recently, Wang et al., demonstrated blocking monocyte migration to the infarcted 

myocardium post-MI with a CCR2 antagonist improved cardiac function and limited the infarct 

size [142].  

Modulating macrophage polarization provides a strategy for reducing infarct size, 

preventing adverse LV remodeling and preserving cardiac function post-MI.  Targeting either 

pro-inflammatory M1 macrophages or promoting M2 macrophage polarization can facilitate 

resolution of inflammatory responses and prevent adverse LV remodeling following MI [143-

145].  Heinen et al., demonstrated short-term treatment with insulin-like growth factor 1 (IGF1) 

after acute MI increased the number of the anti-inflammatory M2 macrophages in heart tissue 

reducing infarct size and improving cardiac function [146].  Moreover, treatment with exogenous 

IL-19 attenuated acute ischemic injury and improved survival of mice following MI via inhibition 

of macrophage polarization toward the proinflammatory M1 phenotype while stimulating the 

polarization and formation of the pro-healing M2 macrophages [147].  Recent evidence 

suggests the type 2 diabetes mellitus medication, pioglitazone, can limit cardiac remodeling 

caused by IR injury or ligation of left anterior descending artery (LAD) by antagonizing 

monocyte/macrophage-mediated acute inflammation promoting cardiac healing. Pioglitazone  

reduced macrophage recruitment to the injured myocardium and promoted polarization of 

existing macrophages toward a M2 phenotype [148]. 

Several lines of evidence indicate inhibiting the activation of TGF-β and its downstream 

signaling pathways protects the heart against post-MI cardiac remodeling and fibrosis [149, 

150]. For example, the cardioprotective effects of some traditional Chinese medicines, Linggui 
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Zhugan Decoction (LZD) and Qiliqiangxin, are  attributed to inhibition of TGF-β1/Smad-

mediated signaling, which reduced myocardial inflammation limiting ventricular remodeling 

induced by MI [151]. Further evidence, demonstrated downregulating microRNA-330 (miR-330) 

inhibited the activation of the TGF-β1/Smad3 signaling pathway suppressing LV remodeling in 

mice subjected to IR injury [152]. In contrast, microRNA�20b�5p promoted ventricular 

remodeling following myocardial IR injury in rats by inhibiting the expression of the inhibitory 

Smad7 by activating TGF-β1/Smad signaling pathway [153].  Together, these studies highlight a 

role the innate immune system in the development and progression of MI. 

4. Overview of n-3 and n-6 polyunsaturated fatty acids 

The long-chain n-3 and n-6 polyunsaturated fatty acids (PUFA) are essential fatty acids 

obtained from dietary sources. They are characterized by the presence of their first double bond 

at the third (n-3 PUFA) or the sixth position (n-6 PUFA) starting from the omega carbon. The 

simplest n-3 PUFA is α-linolenic acid (ALA, 18:3 n-3) while linoleic acid (LA, 18:2 n-6) is 

considered the primary source of the essential n-6 PUFAs. Once inside the body, ALA and LA 

can be converted into other n-3 and n-6 PUFAs, respectively through a series of elongation and 

desaturation reactions (Fig. 2 and 3). For instance, ALA is metabolized into eicosapentaenoic 

acid (EPA, C20:5n-3) which can be further metabolized into docosahexaenoic acid (DHA, 

C22:6n-3). Using the same series of elongase and delta-4,-5,-6 desaturase enzymes, LA can be 

converted to dihomo-γ-linolenic acid (20:3n-6; DGLA) and metabolized further to yield 

arachidonic acid (AA, 20:4n-6). Mammals lack the necessary enzymes (delta-12 and delta-15 

desaturase) required to synthesize and interconvert between LA and ALA de novo, as such 

these fatty acids are described as “essential” and must be obtained from the diet [154, 155]. The 

average daily intake of LA and ALA in Western countries is 10 and 1 g/day, respectively [156].  

Importantly, both n-3 and n-6 PUFA compete for the same metabolic enzymes, however, 

metabolites generated from n-6 PUFAs are predominant as LA is more abundant in western 
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diets than ALA [157-159].  

5. Cardiovascular benefits of n-3 polyunsaturated fatty acids  

Early evidence suggesting cardiovascular benefits were associated with n-3 PUFAs 

originated from epidemiological studies in Greenland Inuit. These studies suggested a higher 

proportion of EPA compared to AA in their blood was associated with a lower incidence of MI 

compared to Danish study participants. It was hypothesized that these differences were due to 

the higher dietary intake of food sources rich in n3-PUFAs in the Greenland Inuit population 

[160, 161]. Since then, numerous studies have suggested a role of n-3 PUFA for the prevention 

of secondary cardiovascular events in patients with documented CAD [162-168] and showed 

higher intake of n-3 PUFAs lowers the number of mortalities related to cardiovascular diseases 

(CVD) [169-174]. For example, in a prospective cohort study, Mozaffarian et al. demonstrated 

higher plasma levels of n-3 PUFA were associated with lower total mortality rates with fewer 

cardiovascular compared to non-cardiovascular deaths in older adults [175]. In contrast, recent 

clinical studies challenge the cardiovascular benefits of n-3 PUFAs, indicating a weak or even 

non-significant relationship between omega-3 fatty acids and reduction in cardiovascular risk, 

and thus raise questions about the cardiovascular benefits of n-3 PUFAs [176]. Three double-

blind trials, the Alpha Omega, the OMEGA and the SU.FOL.OM3, failed to show any additional 

benefit of n-3 PUFAs on major cardiovascular endpoints [177-179] as well as recent studies 

have yielded non-significant or less promising results for the cardioprotective effects of n-3 

PUFAs [177, 178, 180, 181]. The discrepancies in clinical findings between beneficial and non-

beneficial effects might be attributed to several factors, such as overall improved cardiovascular 

therapy, which includes increased use of beta-blockers, ACEis or ARBs masking any benefits of 

n-3 PUFAs in more recent studies. Moreover, a lack of standardization of treatment doses, drug 

formulations and dietary supplementation in the studies impacts bioavailability and 

cardiovascular effects. For example, marketed products containing the ethyl ester formulation of 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16 

 

n-3 PUFAs have been shown to have reduced bioavailability compared to the free fatty acids 

[182-184].  

 Overall, there remains uncertainty regarding the beneficial effects n-3 PUFAs toward 

cardiovascular events and mortality rates (Table 1 and 2). However, despite these conflicting 

data, the consumption of n-3 PUFA is recommended by the American Heart Association (AHA) 

to prevent clinical CVD events in individuals with prevalent CHD, such as a recent MI, to reduce 

mortality rates and individuals with prevalent HF without preserved left ventricular function to 

reduce hospitalizations and number of deaths [185, 186]. Importantly, there is a growing 

understanding of how different metabolites generated from n-3 PUFA impact cellular and organ 

function, which is providing insight into their potential beneficial role in cardiovascular health 

[187, 188].  

The cardiovascular benefits of n-3 PUFAs may be attributed to their pleiotropic effects 

on the different components of the cardiovascular system, such as the enrichment of 

membranes leading to improved organelle and cellular function [189], autonomic tone [190, 

191], increasing arrhythmic thresholds [192] and reducing blood pressure [191, 193]. Increased 

consumption of n-3 PUFAs has a favorable effect on lipid profiles as they replace saturated fatty 

acids and lower blood triglyceride levels which can stabilize atherosclerotic plaques protecting 

against IHD [57, 194]. Supplementation with EPA and DHA could also exert a protective effect 

on the heart through enriching mitochondrial membrane phospholipids composition and thus 

improving mitochondrial function and increasing the efficiency of ATP generation [195, 196].  

Additional cardiovascular benefits of n-3 PUFA stem from their diverse anti-inflammatory 

properties [197]. For example, the ability of n-3 PUFAs to blunt the excessive activation of the 

innate immune system was demonstrated to have a positive cardiovascular impact abrogating 

the progression of IHD [198, 199]. The anti-inflammatory effects of n-3 PUFAs may reduce and 

stabilize atherosclerotic lesions, which can potentially lead to better outcomes in CAD [200-202]. 
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In addition, growing evidence demonstrates the ability of n-3 PUFAs to reduce circulating levels 

of inflammatory cytokines, chemokines and pro-inflammatory AA-derived metabolites [195, 203, 

204].  The anti-inflammatory mechanisms of n-3 PUFAs and their metabolites have an important 

role in regulating and protecting cardiovascular function (Table 3). 

6. Mechanisms of n-3 PUFAs to reduce inflammation and protect against IHD 

Several basic, clinical and epidemiological studies hypothesize that the cardioprotective 

effects of n-3 PUFAs against IHD are attributed mainly to their immunomodulatory properties 

[198, 205-208]. The anti-inflammatory effects of EPA, DHA and their biologically active 

metabolites, are mediated mainly by G-protein coupled receptors (GPR), particularly GPR120 

[209], and nuclear receptors particularly peroxisome proliferator-activated receptors (PPAR)-α/γ 

[210]. This section will highlight the immunomodulatory mechanisms of n-3 PUFAs and the 

associated cardioprotection against IHD.  

6.1. Metabolite-independent effects 

6.1.1 Modulation of gene expression of different innate immune components  

N-3 PUFAs can regulate the transcription and the expression of inflammatory genes 

including cytokines, chemokines and adhesion molecules in cardiomyocytes, fibroblasts, 

endothelial cells, monocytes and macrophages [211-215]. N-3 PUFAs alter the expression of 

these genes through regulating transcription factors, such as the blocking the action of the pro-

inflammatory NF-kB [216-219], and activating the anti-inflammatory transcription factors 

PPARα/γ [210, 220]. Activation of PPARα/γ transcription factors is believed to directly interfere 

with the activation of NF-kB and prevent its translocation to the nucleus reducing the 

inflammatory burst [221-223]. Mishra et al., demonstrated anti-inflammatory properties of fish oil 

may result from the inhibitory effects of EPA and DHA on NF-κB activation via a PPARα-

dependent pathway in both human umbilical vein endothelial cells (HUVEC) and microvessel 

endothelial cells [224]. This is supported by evidence from data showing treatment of 
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differentiated THP-1 and HUVECs with EPA led to the upregulation PPARα which inhibited NF-

κB activation and attenuated TNFα-induced production of MMPs [201]. Another important 

immunomodulatory mechanism involves activating the GPR120 receptor, which mediates robust 

and broad anti-inflammatory effects.  Research from Oh et al., indicated n-3 PUFAs act on and 

stimulate GPR120 in both monocytic RAW 264.7 cells and primary intraperitoneal macrophages 

inhibiting TLR4-mediated inflammatory responses blocking NF-kB activation.  Knockdown of 

GPR120 knockdown attenuated the protective effects attributed to n-3 PUFA consumption [209] 

(Fig.4).  

Incorporation of n-3 PUFA such as EPA directly into human atherosclerotic plaques has 

been associated with a reduced number of foam cells and T cells, less inflammation and 

increased plaque stability. While the exact mechanism was unknown, the beneficial effects were 

attributed to suppression of extracellular matrix proteins MMP-7, MMP-9 and MMP-12 involved 

in remodeling [225]. Limiting adverse left ventricular remodeling and myocardial fibrosis caused 

by MI or pressure overload stems from an ability of n-3 PUFA to regulate fibrosis and 

inflammatory signaling.  Evidence demonstrates inhibiting the TGF-β1-induced smad2/3 

pathway or activating GPR120 signaling to regulate TAK1 and downstream NF-κB responses 

are potential mechanisms [209, 226]. Eclov et al. demonstrated EPA, but not DHA, prevented 

cardiac fibrosis in a mouse model of pressure overload-induced HF via activation of GPR120 

and blocking the TGF-β fibrotic pathway [227].  Long-term administration of EPA in mice for 28 

days before and 28 days after experimental MI induction improved the prognosis, reduced the 

post-MI fibrosis and limited LV remodeling via inhibition of the TGF-β/Smad signaling and 

promoting macrophage polarization toward the anti‐inflammatory M2 phenotype [228]. Further 

evidence, demonstrated oral administration of EPA to DahlS.Z‐Leprfa/Leprfa (DS/obese) rats 

increased adiponectin secretion which inactivated NF-κB signaling leading to a reduction in 

cardiac fibrosis and attenuation of diastolic dysfunction [229].   
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6.1.2 Altering the cell membrane structure 

Incorporation of n-3 PUFAs into membrane phospholipid bilayers proposes potential 

insight into the immunomodulatory effects by altering membrane architecture and protein 

function, which impacts membrane-mediated signaling, generation of bioactive lipids, gene 

activation, protein trafficking and cytokine secretion [230-234]. The increased membrane 

incorporation may alter both innate and adaptive immune responses, including the maturation of 

dendritic cell, macrophage function, as well as T and B cell polarization/activation [235-240]. It 

was demonstrated that DHA was better than EPA in replacing n-6 PUFAs and cholesterol in 

plasma membranes of aortic endothelial cells increasing the  fluidity of the phospholipid 

membrane [241]. A change in fluidity can interfere with membrane protein, receptor and 

transporter function such as the dimerization and expression of the TLR4 subunits, impeding the 

downstream inflammatory response [242, 243]. Inflammatory cells such as neutrophils, 

monocytes, macrophages and lymphocytes often contain a large proportion of AA in their 

membrane. The activation of phospholipase A2 (PLA2), the enzyme that liberates AA from the 

cell membrane, is amongst the earliest biochemical alterations in ischemic myocardium [244-

246]. Free AA becomes afterwards a potent source of pro-inflammatory metabolites. However, 

the substitution of AA with EPA and DHA in the cell membrane, by increasing the consumption 

of n-3 PUFAs, can alter immune cell reaction in response to inflammatory stimuli by shifting the 

metabolic profile to less proinflammatory or even anti-inflammatory metabolic profile [247-250]. 

6.2. Metabolite-dependent effects 

As illustrated earlier, the metabolism of n-3 and n-6 PUFAs is closely intertwined as their 

metabolic pathways compete for the same enzymes. In most cell types, AA is the prevalent 

PUFA present in membrane phospholipids of cells; for example, in mononuclear cells taken 

from healthy volunteers consuming a typical Western diet, the mean proportions of LA, DGLA, 

AA, EPA and DHA were 10, 2, 20, 0.5 and 2.5% of the total fatty acid content [251].  Liberation 
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of AA from the cell membrane by activated PLA2 under stress conditions generates a wide 

variety of pro-inflammatory metabolites [252]. The released AA acts as a substrate for 

cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) enzymes to yield a 

family of oxygenated metabolites. COX converts AA to the 2-series of prostaglandins (PGs) and 

the 2-series of thromboxanes (TxA), while LOX enzymes metabolize AA to the 4-series LTs and 

the hydroxyicosatetraenoic acids (HETEs) (Fig. 3). These metabolites are considered pro-

inflammatory mediators that are involved in various pathological processes including IHD [253-

256].  Following consumption, n-3 PUFAs compete with n-6 PUFAs for incorporation into cell 

membranes and for active sites in COX and LOX enzymes to produce less potent pro-

inflammatory or even anti-inflammatory metabolites [257]. For example, the production of PGE2 

and LTB4 by human inflammatory cells was significantly decreased in a diet rich in fish oil [258-

261]. N-3 PUFAs can act as a substrate for COX and 5-LOX enzymes resulting in production of 

the 3-series of PGs and Txs as well as the 5-series LTs, which are a set of less inflammatory or 

even anti-inflammatory metabolites in comparison to the metabolite family derived from AA [262, 

263]. Importantly, 5-, 12- and 15-LOX enzymes are involved in the formation of potent anti-

inflammatory mediators derived from the metabolism DHA and EPA called resolvins, protectins 

and maresins (Fig.2). Therefore, the metabolism of n-3 PUFAs by COX and LOX enzymes 

reduces AA-derived pro-inflammatory metabolites and shifts the metabolic profile toward anti-

inflammatory mediators, suggesting a central cardioprotective mechanisms of n-3 PUFAs.  

6.2.1 COX-derived metabolites of n-3 PUFAs  

Numerous studies have shown COX-mediated metabolites of n-6 PUFAs, 2-series PGs 

and 2-series TxA, play an important role in the pathogenesis of CAD. For instance, TxA2, a 

potent vasoconstrictor and platelet aggregator, participates in the initiation and progression of 

atherogenesis through induction of leukocyte-endothelial cell interaction, platelet activation and 

thus thrombus formation after the rupture of the atherosclerotic plaque [264]. In addition, a 
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predominant metabolite found in macrophages, PGE2, induces the expression of MMP 

enzymes which are crucial in the degradation of atherosclerotic plaque, triggering thrombosis 

and thus MI induction [265]. However, evidence indicates PGE2 or its analogues can also 

protect the heart from IR injury via activation of its receptor subtype E prostanoid receptor 4 

(EP4), suggesting that EP4 agonists are probably useful for protection against reperfusion-

induced cardiac injury [266]. Moreover, Degousee et al. demonstrated PGE2 could impart a 

beneficial effect in the infarcted heart by preventing the pathological myocardial remodeling and 

improve cardiac function after MI [267, 268].  

Experimental evidence demonstrate diets rich in n-3 PUFAs shift the balance from TxA2 

to TxA3 production, increase the levels of PGI3 and PGE3 and decrease COX-2 gene 

expression, reducing the pro-inflammatory mediators and effects attributed to metabolism of AA 

[269-273]. For example, TxA3 possesses significantly less potent platelet activation and 

vasoconstriction properties making it less pro-thrombotic than TxA2 [274, 275]. Moreover, n-3 

PUFAs decrease the affinity of the TxA2 receptor for TxA2, thus inhibiting TxA2-induced platelet 

aggregation [276]. Research from Tull et al. demonstrated EPA-derived metabolites, PGD3, can 

antagonize neutrophil recruitment induced by the AA metabolite, PGD2, reducing the 

inflammatory response [277].  18-hydroxyeicosapentaenoic acids (18-HEPE) is another 

important metabolite produced from the metabolism of EPA via either aspirin-acetylated COX-2 

[278] or cytochrome P450 monooxygenase [279] enzymes, which possess important anti-

inflammatory and anti-fibrotic properties. For example, 18-HEPE was able to prevent 

macrophage infiltration, cardiac fibrosis and remodeling in a model of transverse aortic 

constriction (TAC) pressure overload [280]. Together, these studies highlight the complex 

nature of COX metabolites in the cardiovascular system. 

6.2.2 LOX-derived metabolites of n-3 PUFAs 
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When n-6 PUFAs predominate in cell membranes, proinflammatory mediators such as 

LTs are produced via the LOX pathways. Conversely, higher ratios of n-3 PUFAs promote 

secretion of less potent LTs, resulting in a shift to a milieu of less inflammatory mediators. LOX 

enzymes catalyze the oxidation of AA to produce hydroperoxyeicosatetraenoic acids (HpETEs), 

which are then reduced to form their HETE derivatives. 5-LOX, 12-LOX and 15-LOX catalyze 

the metabolism of AA to 5-HETE, 12-HETE and 15-HETE, respectively, which are present in the 

heart [281-284]. LOX enzymes have a higher affinity for n-3 PUFAs and increased consumption 

of n-3 PUFAs favors the production of the less pro-inflammatory LTs than the AA-derived 

inflammatory mediators. For instance, Chapkin et al. illustrated the increased generation of 5-

series LTs in macrophages of fish oil-fed mice [272] and neutrophils from humans 

supplemented with oral fish oil for several weeks [258, 285-288]. Therefore, an increased 

availability of n-3 PUFAs can shift the metabolism from the detrimental LOX-mediated 

metabolites of AA, to the less biologically active n-3 PUFA-derived LTB5 metabolite which 

possesses 10 to 100 times reduced potency [263, 289-293]. 

LOX-mediated HETEs are pro-inflammatory and tend to be produced excessively in 

models of myocardial IR injury [294]. 5-HETE and 12-HETE levels were found to increase 

significantly in cultured canine myocytes following hypoxia reoxygenation conditions [295]. 

HETEs play a significant role in the recruitment of leucocytes to damaged areas, production of 

pro-inflammatory cytokines and contribute to non-resolving inflammation in cardiac pathology 

[296, 297]. Indeed, elevated expression of 12/15-LOX in mice results in increased pro-

inflammatory markers such as MCP-1 and IL-6 and recruitment of monocytes, as well promotes 

monocyte–endothelial cell interactions that lead to atherogenesis [298-300]. Whereas, 12/15-

LOX null mice have significantly lower potential to develop atherosclerosis [301]. Interestingly, 

reduced plasma levels of 12-HETE in 12/15-LOX null mice resulted in better post-MI survival 

secondary to the advanced resolution of inflammation [302].  Metabolite products of 12-LOX 
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have a role in the development of cardiac fibrosis and hypertrophy, for example, overexpression 

of 12-LOX in rat fetal cardiac fibroblasts resulted in growth of cardiac fibroblasts associated with 

significant elevation of collagen and fibronectin levels, indicative of a fibrotic phenotype [303, 

304].  

The 5-LOX enzyme catalyzes the conversion of AA to LTA4, an unstable intermediate, 

which can be metabolized by LTA4 hydrolase to LTB4, a potent chemoattractant, or conjugated 

to glutathione producing the cysteinyl LTs (CysLTs), including LTC4, LTD4, and LTE4 [305-

307]. Interest in the possible involvement of LTs in the development of IHD stems from studies 

demonstrating robust relationships between LTs and an increased risk of atherosclerotic 

plaques and development of MI [308, 309]. The 4 series LTs from 5-LOX mediated metabolism 

are abundantly expressed in arterial walls of patients with atherosclerosis. As 5-LOX is mainly 

localized in macrophages, dendritic cells, foam cells, mast cells and neutrophilic granulocytes, 

increased numbers of these cells, and consequently LT production, are associated with 

atherosclerotic lesions [310-312].  LTs have a role in the migration and infiltration of leukocytes 

to injured tissues as several reports indicate a correlation between myocardial infarct size with 

the extent of LT-mediated leukocyte recruitment to the injured myocardium [86, 313].  

Involvement of CysLT in the pathogenesis and progression of IHD comes from studies 

demonstrating increases in LTC4 and LTD4-mediated expression of the adhesion molecule P-

selectin in human endothelial cells and enhanced pro-inflammatory signals of IL-8, CXCL-2 and 

COX-2 correlating with worse outcomes [314-316]. Earlier studies demonstrated increased 

levels of CysLTs in CAD had numerous aggravating consequences including vasoconstrictive 

effects on coronary arteries, inducing coronary smooth muscle cell proliferation and 

inflammation as well as negative inotropic action all of which worsen the prognosis [317, 318]. 

Ni et al. showed that activation of endothelial and non-endothelial CysLT receptors increases 

vascular permeability and facilitates the recruitment of leukocytes exacerbating the 
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consequences of IR injury [319]. While the exact mechanisms remain unknown, early work by 

Hock et al. showed that antagonism of CysLTs receptor reduced the magnitude of myocardial 

necrosis in a feline model of IR injury [320]. Together, the detrimental effects of CysLT may 

worsen the clinical manifestation of IHD. 

6.2.3 CYP-derived metabolites of n-3 PUFAs  

CYP2J and CYP2C isoforms, the constitutively expressed CYP epoxygenases found in 

the cardiovascular system metabolize EPA into 5 regioisomeric epoxyeicosatetraenoic acids 

(5,6-, 8,9-, 11,12-, 14,15-, 17,18-EEQ) and DHA into 6 regioisomeric epoxydocosapentaenoic 

acids (4,5-, 7,8-, 10,11-, 13,14-, 16,17-, 19,20-EDP) [321-325]. CYP epoxygenases 

preferentially catalyze the epoxidation of the terminal double bond of n-3 PUFAs generating 

17,18-EEQ and 19,20-EDP which become the predominant endogenous lipid mediators 

produced in most tissues, including the lung, kidney, heart and plasma [323, 326, 327]. Of note, 

these epoxylipids appear to be more effective at lower concentrations compared to their 

parental n-3 PUFA.  For example, Falck et al., showed that 17,18-EEQ was able to protect 

neonatal rat cardiomyocytes against Ca2+-overload with an EC50~1–2 nM, while EPA required 

prolonged incubation and a ~1000-fold higher concentration to produce the same effect   [328]. 

The epoxy metabolites EEQs and EDPs may then undergo further metabolism by soluble 

epoxide hydrolase (sEH) enzymes to corresponding inactive diols [329, 330]. Because the ω-3 

double bond distinguishing EPA and DHA from AA is the preferred site of attack by human 

CYPs, n-3 PUFAs compete with AA as alternate substrates for CYP metabolism. Accordingly, 

supplementation with EPA and DHA increases the proportion of EEQ and EDP metabolites at 

the expense of the AA-derived CYP epoxy metabolite, epoxyeicosatrienoic acids (EET) [323].  

Recent evidence indicates the CYP-derived metabolites, 17,18-EEQ and 19,20-EDP, 

are responsible for mediating different anti-inflammatory effects of n-3 PUFAs in various models 

of injury [323, 331-333]. Fang et al., demonstrated a n-3 PUFA-rich diet given to mice 
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attenuated MI injury by shifting the metabolite profile to more anti-inflammatory mediators, 

increasing 19,20-EDP and 17,18-EEQ levels while decreasing PGE2 [334]. In response to 

cardiac IR injury, the innate immune system triggers inflammatory reactions resulting in both 

protective and detrimental outcomes, which involves NLRP3 inflammasomes and 

proinflammatory cytokines.  In a mouse model of IR injury, DHA and 19,20-EDP exerted 

cardioprotective properties resulting in improved postischemic functional recovery associated 

with attenuation of NLRP3 inflammasome complex activation and preserved mitochondrial 

function [82]. Interestingly, the attenuation of NLRP3 inflammasome activation was not 

observed following treatment with EPA or 17,18-EEQ, and importantly inhibition of CYP 

epoxygenase activity prevented the conversion of DHA to 19,20-EDP abolishing the protective 

effect [82].  Anti-inflammatory effects of CYP-derived epoxy metabolites have been 

demonstrated in other conditions, such as 19,20-EDP inhibited TNFα-induced retinal vascular 

inflammation and intraperitoneal infusions of 17,18-EEQ and 19,20-EDP protected against 

allergic intestinal inflammation and kidney fibrosis in respective mouse models [335, 336]. 

17,18-EEQ inhibited TNF-α-induced inflammation in human bronchi via repression of NF-κB and 

activation of the transcription factor PPAR-γ, in which the action of 17,18-EEQ was enhanced by 

sEH inhibition [337]. Using an animal model of inflammatory pain, Morisseau et al. 

demonstrated the DHA epoxides, but neither the parent fatty acid nor the corresponding diols, 

selectively modulate nociceptive pathophysiology [330].  The bacterial endotoxin, 

lipopolysaccharide (LPS) has a significant role in causing numerous cardiovascular 

complications involving adverse inflammatory effects. Recently, it was demonstrated that 19,20-

EDP protected HL-1 cardiac cells from LPS-stimulated inflammatory cell injury by preserving 

mitochondrial integrity and biogenesis [338]. Although the precise molecular mechanisms 

remain unknown, 19,20-EDP-mediated effects activated SIRT1 signaling to promote 

mitobiogenesis and attenuate NF-kB activity [338]. Together, accumulating evidence suggests 

the anti-inflammatory properties of CYP-epoxygenase metabolites of n-3 PUFAs provide 
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important protective responses in models of cardiovascular injury. However further investigation 

is required to elucidate their mechanisms and the extent to which they are involved in 

cardioprotection.  

AA can be metabolized by CYP ω-hydroxylases into mid-chain 5-, 8-, 9, 11-, 12- and 15-

HETEs, terminal 20-HETE as well as subterminal 19-, 18-, 17- and 16-HETEs (Fig. 3)  [339, 

340]. The ability of mid-chain and terminal HETEs to induce inflammatory responses form part 

of the basis for their detrimental effects toward IHD and in the development of CVD [341-344]. 

Kayama et al. showed 12-HETE has a role in the development of HF by increasing MCP-1 

expression in cardiac fibroblasts and endothelial cells as well as increasing the infiltration of 

macrophages into the myocardium leading to cardiac fibrosis [345].  In addition, Maayah et al., 

demonstrated that 12-HETE, 15-HETE as well as 5-HETE are potent inducers of NF-κB 

activation in RL-14 cells, a human ventricular cardiomyocytes cell line [346].  Similarly, 20-HETE 

activates NF-κB signaling and induces expression of cellular ICAM-1 adhesion molecules, 

thereby promoting inflammation leading to vascular endothelial dysfunction, an important 

component in the pathogenesis of IHD diseases [347]. Coronary plasma concentrations of 20-

HETE are markedly increased during ischemia and following reperfusion contributing to infarct 

size development. Accordingly, the selective inhibitors of CYP4A, the main 20-HETE-forming ω-

hydroxylase, reduce ischemic infarct size in IR injury in canine myocardium [348-350]. 

Consistent with animal studies, the role of HETEs in aggravating CHD has been corelated with 

human data indicating concentration of HETEs is markedly higher in symptomatic 

atherosclerotic plaques, as compared with asymptomatic ones [351, 352].  Importantly, while 

there is limited data available regarding n-3 PUFAs, CYP ω-hydroxylases preferentially 

metabolize EPA into hydroxyeicosapentaenoic acids (19- and 20- HEPE) and DHA into 

hydroxydocosahexaenoic acids (21- and 22-HDoHE) at the expense of AA- derived HETEs, 

which are thought to possess anti-inflammatory properties [330, 353-355]. Therefore, increasing 
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consumption of n-3 PUFAs will cause a decrease in the levels of the CYP hydroxylase-derived 

pro-inflammatory metabolites with a concomitant increase in EPA- and DHA-derived anti-

inflammatory metabolites which will have a beneficial impact on the cardiovascular health.  

6.2.4 Resolvins: The anti-inflammatory and resolving mediators 

Important lipid mediators involved in regulating inflammatory responses generated from 

the metabolism n-3 PUFAs include resolvins ‘resolution phase interaction products’ produced 

from both EPA (E-series, RvE1-2) and DHA (D-series, RvD1-6) as well as protectins and 

maresins produced from DHA [278, 356, 357]. The synthesis of resolvins, protectins and 

maresins involve both the COX and LOX pathways, with different epimers being produced in the 

presence and absence of aspirin [358-361].  Resolvins and protectins, produced from EPA and 

DHA, were first discovered in inflammatory exudates during the acute inflammatory process 

indicating their role in the inflammation [278, 356, 362]. Several studies demonstrated resolvins, 

protectins and maresins possess potent anti-inflammatory and inflammation resolving properties 

indicating an importance in terminating ongoing inflammatory processes. These unique 

metabolites promote the resolution of acute inflammation by preventing the migration of 

neutrophils and monocytes across epithelial cells and promoting clearance of PMNs, apoptotic 

cells, and debris from the site of inflammation [356, 363]. For example, Krishnamoorthy et al. 

showed that resolvins inhibit neutrophil tissue infiltration by decreasing the production of the 

chemokine IL-8 and reducing the expression of surface adhesion receptors on the neutrophils, 

such as CD11b or CD18 [364]. Resolvins also reduced neutrophil-derived ROS production, 

favored neutrophils apoptosis and clearance by macrophages, as well as participated in shutting 

off chemokine signaling [365-367].  The partial agonist/antagonist activity of RvE1 on the LTB4 

receptor on PMNs serves to inhibit NF-kB activation, abolish pro-inflammatory cytokines 

production and reduce PMN infiltration [356, 357, 368]. Very recently, Sulciner et al., showed 

that RvD1, RvD2, or RvE1 inhibits debris-stimulated cancer progression by enhancing 
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clearance of debris via macrophage phagocytosis in multiple tumor types. These resolvins 

suppressed the release of the proinflammatory cytokines/chemokines, including TNFα, IL-6, IL-

8, CCL4, and CCL5, by human macrophages cocultured with tumor cell debris [369]. It is 

believed that E and D-resolvins present a similar function; both can inhibit NF-kB by a 

mechanism which is PPAR-γ dependent and mediate most of their actions via specific G-protein 

coupled receptors [272, 370, 371].   

Since inflammation has a direct role in the pathogenesis of CVD, particularly IHD, 

resolvins, due to their anti-inflammatory properties, can improve the prognosis.  For example, 

Morin et al. demonstrated a diet enriched with DHA and monoglycerides significantly increased 

the levels of RvD2 and RvD3, which correlated with reduced levels of proinflammatory 

mediators C-reactive protein (CRP), IL-6, TNF-α, and IL-1β in a rat model of hypertension [372]. 

Several experimental studies illustrated the ability of resolvins to significantly reduce 

atherosclerotic lesions, as observed in mouse models that lack LOX-12 and LOX-15, the two 

enzymes responsible of resolvins synthesis, which have accelerated atherosclerosis 

development [373]. Furthermore, Viola et al. showed administration of RvD2 and Maresin 1 in a 

mouse model of atherosclerosis induces changes in the macrophage profile from an 

inflammatory (M1) toward a reparative phenotype (M2) which contributes to plaque stability and 

thus prevents atheroprogression [374]. Consumption of n-3 PUFAs by patients suffering from 

CAD were able to restore the levels of pro-resolving lipid mediators and promote macrophage 

phagocytosis of blood clots in vitro [375]. Moreover, RvE1 administration was demonstrated to 

reduce TNF-α and interferon-γ (IFN-γ) gene expression in aorta, decrease the levels of the 

inflammatory marker CRP as well as reduce macrophage infiltration into intima and thus 

attenuate atherosclerosis and atherosclerotic plaque formation [376-378].  As a consequence of 

atherosclerosis, VSMCs become more proliferative, chemotactic and have an enhanced 

production capacity of pro-inflammatory cytokines [379]. Evidence demonstrates resolvins are 
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capable of reducing the VSMCs responses via local activation of resolution mechanisms and 

abolishing leukocyte recruitment thereby ameliorating the atheroprogression [380, 381]. 

Consistent with these effects, oxidative stress levels and NF-kB activation were significantly 

lower in the RvD1-treated VSMC samples [382, 383].  

The role of resolvins in protection against cardiac ischemia and reperfusion injury has 

been documented to involve numerous mechanisms including anti-inflammatory properties.  

Both in vivo and in vitro models of IR injury have demonstrated RvE1 can reduce infarct size, 

decrease apoptosis and improve cardiomyocyte survival [384]. Similar results were reported for 

the cardioprotective effects of RvD1, where RvD1 diminished infarct size and neutrophil 

accumulation in the infarcted myocardium and decreased post-myocardial infarct depression 

[385-387]. RvD1 alleviates post-MI inflammation by limiting neutrophil recruitment in the spleen 

and LV, increasing resolving lipid mediators, altering the macrophages phenotype post-MI and 

reducing the expression of pro-fibrotic genes and collagen deposition. Together, these results 

indicated that RvD1 can modulate the pathophysiology of resolution in order to limit cardiac 

remodeling and thus prevent the progression of HF following MI [388]. 

7. Summary and conclusion 

In this review, we highlighted the detrimental role of the uncontrolled activation of the 

innate immune system in worsening the clinical outcomes associated with IHD. We focused on 

immunomodulatory properties of n-3 PUFAs and their bioactive metabolites, illustrating their 

potential cardioprotective effects. Dietary or non-dietary intake of n-3 PUFAs and/or their 

biologically active metabolites have an ability to inhibit many of the adverse effects of an 

immune response. Accordingly, increasing amount of studies demonstrate the ability of n-3 

PUFAs to mitigate the negative consequences of IHD including atherosclerosis, MI, IR injury 

and cardiac remodeling. Several mechanisms contribute to the immunomodulatory effects of n-3 

PUFA including altering cell membranes composition, modifying both cell signaling and gene 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

30 

 

expression, shifting the pattern of the lipid metabolites produced under stress conditions to a 

more anti-inflammatory metabolite profile.  Despite the promising immunomodulatory effects of 

n-3 PUFAs, more clinical and epidemiological research is warranted to translate these results. 
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Figure legends 

Figure 1:  Schematic diagram showing the inflammatory response to acute injury. MI induced 

injury to cardiomyocytes triggers a pro-inflammatory response through the production of 

DAMPS and ROS, which act on the PRR (TLR, NLR) on the nearby cardiomyocytes, endothelial 

cells, fibroblasts and resident immune cells. Activation of these receptors stimulate the release 

of several cytokines and chemokines (such as IL-1β, IL-18, IL-1α, IL-6, TNF-α, CCL2, CCL5), 

which mediate the recruitment and infiltration of inflammatory immune cells (neutrophils, 

monocytes and macrophages) from the peripheral blood stream, spleen and bone marrow to the 

injured myocardium. The migration of these cells aggravates the myocardial injury through 

releasing of additional pro-inflammatory cytokines.  DAMPs, Damage-associated molecular 
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patterns; IR: Ischemia-Reperfusion; ROS, Reactive oxygen species; mtDNA, mitochondrial 

DNA; NLRP3, NACHT, LRR and PYD domains-containing protein 3; NLR: NOD-like receptor; 

PRRs, Pattern recognition receptors; TLRs, Toll-like receptors. 

Figure 2:  Overview of n-3 PUFA Metabolism. ALA, EPA and DHA are essential fatty acids 

obtained from dietary sources. EPA and DHA found in cell membrane phospholipids can be 

released by the enzyme PLA2. Subsequently, EPA and DHA can be metabolized by COX, LOX 

and CYP enzymes into a vast array of differing metabolites with numerous physiological 

functions.  ALA, α-Linolenic acid; COX, Cyclooxygenase; CYP, Cytochrome P450; DHA, 

Docosahexaenoic acid; DiHDPA, Dihydroxydocosapentaneoic acid; DHEQ, 

Dihydroxyeicosatetraenoic acid; EDP, Epoxydocosapentaenoic acid; EEQ, 

Epoxyeicosatetraenoic acid; EPA: Eicosapentaenoic acid; HEPE, Hydroxyeicosapentaenoic 

acid; HpDHA, Hydroperoxydocosahexaenoic acid; LT, Leukotriene; LOX, Lipoxygenase; MaR, 

Maresin; PD, Protectin; PG, Prostaglandin; PLA2, Phospholipase A2; PUFA, Polyunsaturated 

fatty acid;  Rv, Resolvin; sEH, Soluble epoxide hydrolase; Tx, Thromboxane. 

Figure 3:   Overview of n-6 PUFA Metabolism. LA and AA are essential fatty acids obtained 

from dietary sources. AA found in cell membrane phospholipids can be released by the enzyme 

PLA2. Subsequently, AA can be metabolized by COX, LOX and CYP enzymes into a vast array 

of differing metabolites with numerous physiological functions.  AA, Arachidonic acid; COX, 

Cyclooxygenase; CYP, Cytochrome p450; CysLTs, Cysteinyl leukotrienes; DHET, 

Dihydroxyeicosatrienoic acid; DGLA, Dihommo-gamma-linolenic acid; EET, Epoxyeicosatrienoic 

acids; GSH, Glutathione; HETE, Hydroperoxyeicosatetraenoic acid; HpETE, 

Hydroperoxyeicosatetraenoic acid; LA, Linoleic acid; LOX, Lipoxygenase; LT, Leukotriene; PG, 

Prostaglandin; PLA2, Phospholipase A2; PUFA, Polyunsaturated fatty acid; sEH, Soluble 

epoxide hydrolase; Tx, Thromboxane. 
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Figure 4:  Schematic diagram of n-3 PUFAs immunomodulatory effects. The anti-inflammatory 

and anti-fibrotic effects of n-3 PUFAs and their metabolites are ascribed to their ability to: (1) 

incorporate into the cell membrane and displace AA as an alternative substrate for PLA2, (2) 

alter the lipid raft restricting the dimerization and pro-inflammatory signaling of TLR, (3) activate 

GPCR mediated signaling that stimulates PPARs and inhibits NF-kB activity, (4) undergo CYP 

epoxygenase mediated metabolism into the corresponding anti-inflammatory oxylipins, (5) 

inhibit the NLRP3 inflammasome cascade, (6) prevent the activation of the pro-fibrotic TGF-β 

signaling pathway, and, (7) undergo metabolism into anti-inflammatory and pro-resolving lipid 

mediators resolvins, protectins, and maresins.  AA, Arachidonic acid; COX, Cyclooxygenase; 

CYP, Cytochrome p450; DHA, Docosahexaenoic acid; DAMPs,  Damage-associated molecular 

patterns; EPA, Eicosapentaenoic acid; GPCR, G-protein coupled receptor; IL, Interleukin; LOX, 

Lipoxygenase; MI, Myocardial infarction; NF-kB, Nuclear factor kappa-light-chain enhancer 

activated B-cells; NLRP3, NACHT, LRR and PYD domains-containing protein 3; PLA2, 

Phospholipase A2; PPAR, Peroxisome proliferator-activated receptor; TLR, Toll- like receptor; 

TGF, Transforming growth factor. 
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Table 1: Clinical trials showing positive effect of n-3 PUFAs in the cascade of IHD 
 

Sample criteria and 
size (n) 

Treatment Protocol  Key Findings  Conclusion  Reference  

- DART Trial:  
- Prior MI 
- < 70 years old  
- (2033) 

- Advised to consume 2-3 
weekly portions (200-
400g) of fatty fish vs. no 
advice 

- 2 years 

- Significantly reduced death rate 
(RR=0.71) and reduced IHD event 
(RR=0.84). 

-  2-3 servings of fatty fish per week 
may reduce all cause mortality and 
IHD-related deaths in male patients 
with a history of MI. 

[164] 
 

- GISSI – Prevenzione 
Trial: 

- Recent MI (≤ 3 
months)  

- (11, 324) 

- 0.85-0.882g/day EPA and 
DHA ethyl esters vs. no 
treatment control 

- 3.5 years 

- Significantly reduced death, non-fatal 
MI or stroke (RR=0.85). 
 

- N-3 PUFA supplementation may 
be effective for secondary 
prevention of CV events and death. 

[389] 
 

- Patients awaiting 
carotid 
endarterectomy  

- (188) 

- Fish oil capsules 
(0.86g/day EPA and 
0.52g/day DHA) vs. 
sunflower oil capsule or 
placebo control 

- 42 days 

- Significantly higher EPA and DHA in 
lipid fractions of plaques.  

- Significantly reduced plaque 
macrophage infiltration. 

- No difference in ICAM-1 or VCAM-1 
levels and T lymphocytes in plaques. 

- N-3 PUFA supplementation may 
increase carotid plaque stability via 
reduction of thinning of fibrous caps 
and plaque inflammation. 

[194] 

- Autopsy results of 
deceased Alaskan 
Natives and Non-
natives  

- Unmatched  
- (245) 

 

- Observational study.  
- No intervention 

- Significantly higher proportion of EPA 
and DHA in adipose tissue TG. 

- Significantly fewer raised 
atherosclerotic lesions in abdominal 
LAD coronary artery and right 
coronary Alaskan Natives.  

-  Higher dietary intake of n-3 
PUFAs may correlate with the 
observed increase in n-3/n-6 PUFA 
ratio in adipose tissue and reduced 
severity of coronary artery plaques. 

[390] 

- Postmenopausal 
women 

- Established CAD 
- Previous coronary 

angiography  
- (288) 

- Observational prospective 
cohort study.  

- No intervention 
- 3.2 years 

- Significantly reduced mean coronary 
artery diameter, stenosis, and new 
lesion development in patients with 
DHA levels above median values. 

- Higher plasma DHA levels may be 
associated with reduced coronary 
plaque progression in post-
menopausal women with a history of 
CAD. 

[167] 
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- Confirmed CVD 
and/or RA and/or OA 

- Elevated CRP  
- (99) 

- Neptune Krill Oil (NKO) 
300mg daily (17% EPA 
and 10% DHA) vs. 
placebo 

- 30 days 

- Significantly reduced CRP levels by 
7, 14, and 30 days.  

- Short term EPA/DHA 
supplementation may reduce 
systemic inflammatory response in 
various chronic inflammatory 
pathologies and improve overt 
clinical symptoms. 

[391] 

- T2DM 
- Metabolic syndrome  
- (44) 

- 1.8g/day EPA (>98% EPA 
ethyl ester) + diet 
intervention vs. diet alone 

- 3 months 

- Significantly reduced CRP, sdLDL, 
CETP activity, and RLP-TG from 
baseline. 

- EPA supplementation may reduce 
markers of inflammatory response 
and improve serum lipid profile in 
patients suffering from metabolic 
syndrome at risk for CVD. 

[392] 

- JELIS Trial: 
- TC ≥ 6.5 mmol/L 
- LDL-C ≥ 4.4mmol/L 
- Statin treatment  
- (18,645) 

- 1.8g/day EPA vs. statin 
treatment only 

- 4.6 years 

- Significantly reduced major coronary 
events (HR=0.81) and unstable 
angina (HR=0.76). 

- Reduced fatal and non-fatal MI, 
coronary events and death. 

- Combined EPA and statin therapy 
in patients with dyslipidemia may 
reduce the incidence of major 
coronary events.  

[393] 
 

- GISSI-HF Trial: 
- Chronic heart failure 
- NYHA class II-IV  
- (6975) 

- 0.85-0.882g/day EPA and 
DHA ethyl esters vs. 
placebo 

- 3.9 years 

- Significantly reduced time to death 
(HR=0.91) and combined time to 
death or  

- CV hospital admission (HR=0.92). 

- Patients with chronic heart failure 
supplemented with n-3 PUFAs may 
experience prolonged survival and 
reduced CV-associated hospital 
admissions. 

[394] 
 

- COMBOS Trial: 
- subjects with 

Residual 
hypertriglyceridemia 
despite 8 weeks of 
diet and simvastatin 
40mg/d therapy 

- (256) 

- P-OM3 4 g/d to an 
ongoing regimen of 
simvastatin 40 mg/d  vs. 
simvastatin 40mg/day 
only 

- 16 weeks 

- P-OM3 significantly reduced VLDL-P 
size and increased low-density LDL-
P size without altering HDL-P size.  

- P-OM3 did not significantly change 
total VLDL-P or LDL-P 
concentrations.  

- P-OM3 significantly lowered large 
VLDL-P and IDL-P concentrations.  

- P-OM3 significantly reduced Lp-PLA2 
concentrations.  

- High dose n-3 PUFA 
supplementation in conjunction with 
statin therapy may improve 
lipoprotein profiles and reduce 
inflammatory response in 
hypertriglyceridemic patients. 
 

[395] 
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- Hyperlipidemia  
- (34) 

- 7.5g DHA oil (3g 
DHA)/day vs. placebo 

- 3 months 

- Decreased circulating WBCs, CRP, 
GM-CSF and IL-6 concentrations.  

- Increased MMP-2 levels.  
- No significant change in plasma NO, 

SAA, G-CSF, IL-1b, IL-2, IL-8, IL-10, 
TNF�, ICAM-1, VCAM-1, and E-
Selectin. 

- Short term DHA supplementation 
may alter the inflammatory response 
in dyslipidemic male patients by 
impacting circulating inflammatory 
biomarker levels which may 
correlate with improved blood lipid 
profile and fatty acid composition. 
 

[396] 

- OCEAN Trial:   
- Patients awaiting 

carotid 
endarterectomy  

- (121) 

- OMACOR 2g/day (0.81g 
EPA and 0.675g DHA 
ethyl esters) vs. placebo 

- 21 days 

- Increased plaque EPA and 
decreased foam cell composition. 

- Negative correlation between plaque 
EPA composition and plaque 
inflammation, instability and number 
of plaque T cells.  

- Significantly lowered plaque MMP-7, 
MMP-9, MMP-12, IL-6, ICAM-1, and 
TIMP-2 mRNA levels. 

- Increased incorporation of EPA 
into atherosclerotic plaques in 
patients with advanced carotid 
atherosclerosis supplemented with 
n-3 PUFAs may be associated with 
reduced plaque inflammation and 
improved plaque stability. 
 

[225] 
 

- DOIT Trial:  
- Cholesterol >6.45 

mmol/L 
- (563) 

- 2.4g/day n-3 PUFAs (49% 
EPA and 35% DHA) vs. 
placebo 

- 3 years 

- Significantly reduced all-cause 
mortality (HR=0.53), as well as fatal 
and non-fatal CV events (HR=0.89). 

- Male patients with elevated serum 
cholesterol supplemented with n-3 
PUFAs may experience reduced 
mortality and incidence of CV 
events. 
 

[397] 
 

- MARINE Trial:  
- Elevated TG  
- (299) 

- AMR101 (EPA ethyl ester; 
icosapent-ethyl) 4g/day 
and 2g/day vs. placebo 

- 12 weeks 

- Significantly reduced TG levels from 
baseline 

1. -33.1% (4g/day) 
2. -19.7% (2g/day) 

- High and moderate dose EPA 
supplementation in patients with 
hypertriglyceridemia may reduce TG 
levels, improve overall blood lipid 
profile, and reduce PLA2 activity 
levels. 

[398] 
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- Previous PCI 
- ACS or stable angina  
- (54) 

- Observational study.  
- No intervention 

- Higher colour grade of yellow 
plaques and number of non-culprit 
yellow plaques with thrombus in 
patients with low EPA:AA ratio. 

- Association between serum EPA and 
grade 3 yellow plaques (OR=0.98). 

- Low serum EPA and EPA/AA ratio 
may be correlated with the observed 
increase in coronary plaque grade 
and plaque vulnerability in patients 
with a history of CVD who have 
undergone PCI. 

[399] 

- ANCHOR Trial: 
- High CVD risk 
- Statin therapy 
- Elevated TG 
- (702) 

- AMR101 (EPA ethyl ester; 
icosapent-ethyl) 4g/day 
and 2g/day vs. placebo 

- 12 weeks 

- Significantly reduced  
(A) TG levels  
1. -21.5% (4g/day) 
2. -10.1% (2g/day) 
(B) Lipoprotein Phospholipase A2  
1. -19.0% (4g/day)  
2. -18.0% (2g/day)  
(C) hs-CRP  
1. -22.0% (4g/day) 
2. -6.8% (2g/day)  

- In high risk patients on statin 
therapy with elevated TG, EPA may 
improve plasma lipid parameters 
compared to baseline levels as well 
as reduce markers of systemic 
inflammation. 

[400] 
 

- EVOLVE Trial:  
- Elevated TG 
- Untreated 

dyslipidemia or on 
stable dose lipid-
lowering therapy 

- BMI ≥ 20 
- (399) 

- EPANOVA (n-3 free fatty 
acid) 2,3, and 4g/day vs. 
placebo 

- 12 weeks 

- Significantly reduced  
(A) TG levels 
1. -25.9% (2g/day) 
2. -25.5% (3g/day) 
3. -30.9% (4g/day) 
(B) Lipoprotein Phospholipase A2  
1. -14.9% (2g/day)  
2. -11.1% (3g/day)  
3. -17.2% (4g/day)  

- No significant change in hs-CRP 

- N-3 PUFA supplementation in 
conjunction with lifestyle and diet 
interventions may improve serum 
lipid parameters but only have a 
modest effect on inflammatory 
response. 

[401] 
 

- Untreated 
dyslipidemia with 
non-culprit thin-cap 
fibroatheroma (TCFA) 
lesions 

- Underwent PCI or 
ACS with elevated 
LDL-C 

- (30) 

- 1.8g/day EPA + 
rosuvastatin vs. 
rosuvastatin treatment 
alone 

- 9 months 

- Greater fibrous cap thickness and 
decrease in lipid arc and lipid length. 

- Significantly reduced hs-CRP levels 
and PTX3 cytokine levels. 

- Lower incidence of macrophage 
accumulation. 

- EPA supplementation in addition to 
statin therapy may enhance fibrous 
cap stability possibly by reducing 
plaque inflammation and systemic 
inflammatory response compared to 
statin treatment alone. 
 

[402] 
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- OMEGA-REMODEL 
Trial: 

- Prior MI 
- (358) 

- LOVAZA 4g/day (1.86g 
EPA and 1.5g DHA ethyl 
esters) vs. placebo 

- 6 months 

- Significantly reduced  
1. LV remodeling  
2. hs-CRP  
3. Lipoprotein Phospholipase A2  
4. Myeloperoxidase levels 

- N-3 fatty acids may reduce the 
extent of myocardial remodeling and 
fibrosis as well as serum biomarkers 
of inflammation in patients post-MI. 

[403] 
 

- Statin treatment for at 
least 6 months 

- Dyslipidemia, stable 
angina with plan to be 
treated with bare 
metal stent 

- (95) 

- 1.8g/day EPA + statin vs. 
statin alone 

- 6 months 

- Increased EPA:AA ratio from 
baseline.  

- Significant increase in fibrous volume 
and reduction in lipid volume of 
coronary plaques. 

- Significant decrease in PTX3 and 
MCP-1 levels.  

- Change in lipid volume significantly 
correlated with PTX3 cytokine and 
MCP-1 levels. 

- Treatment with EPA in conjunction 
with statin therapy may help 
improve coronary plaque stability 
and composition which may be 
associated with a reduction in local 
inflammatory biomarker 
concentrations. 

[204] 

- REDUCE-IT Trial:  
- CVD or diabetes  
- Statin therapy 
- TG 1.52-5.56 mmol/L 
- LDL-C 1.06-2.59 

mmol/L 
- (8179) 

- VASCEPA (EPA ethyl 
ester; icosapent-ethyl) 
4g/day vs. placebo 

- 4.9 years 

- Significant reduction in CV death, 
non-fatal MI or stroke, coronary 
revascularization, or unstable angina 
(HR=0.75). 

- Significant reduction in hs-CRP. 

- High dose EPA may reduce 
incidence of major CV events or 
mortality in patients at high risk for 
or with established CVD. 

[404] 
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Table 2: Clinical trials showing no effect of n-3 PUFAs in the cascade of IHD 

Sample criteria and 
size (n) 

Treatment Protocol  Key Findings  Conclusion  Reference  

- ALPHA OMEGA 
Trial:  

- Prior MI (median 3.7 
years) 

- (4837) 

- EPA + DHA 0.4g/day vs. 
placebo 

- 3.4 years 

- No significant change in major CV 
events (HR=1.01). 

- Low dose dietary supplementation 
with n-3 PUFAs in patients with 
previous MI receiving optimized 
pharmacological therapy may be 
ineffective for secondary prevention 
of subsequent major cardiovascular 
events. 

[177] 
 

- OMEGA Trial: 
- Recent MI (3-14 

days) 
- Received guideline 

recommended 
treatment for acute 
MI 

- (3851) 

- 1g/day (0.46g EPA and 
0.38g DHA) vs. placebo 

- 1 year 

- No significant change in sudden 
cardiac death (OR=0.95). 

- Patients receiving guideline-
recommended post-MI 
pharmacological therapy and 
supplemented with n-3 PUFAs may 
not receive any additional benefit in 
prevention of sudden cardiac death, 
CV events, or total mortality 
compared to guideline 
pharmacological therapy alone. 

[178] 
 

- Elevated TG  
- (26) 

- High dose n-3 PUFA 
3.4g/day EPA+DHA 
(LOVAZA, 0.465 EPA and 
0.375 DHA per 1g 
capsule) vs. low dose n-3 
PUFA 0.85g/day 
EPA+DHA  

- 8 weeks 

- Decreased TG (-27%).  
- No significant changes in measures 

of endothelial function, cholesterol, 
hs-CRP, IL-1�, IL-6, and TNF� levels 
or gene expression in lymphocytes. 

- Supplementation with high dose n-
3 PUFAs may lower TG levels from 
baseline but have little additional 
benefit on endothelial function or 
inflammation compared to low dose 
n-3 PUFA supplementation. 
 

[405] 

- ORIGIN Trial:  
- High CVD risk 
- Dysglycemia or 

diabetes  
- (12,536) 

- 0.9g/day EPA and DHA 
vs. placebo 

- 6.2 years 

- No significant reduction in CV death 
(HR=0.98). 

- N-3 PUFA supplementation in 
patients with dysglycemia at high 
risk for CVD may not significantly 
reduce the incidence of major CV 
events or moratlity despite a 
reduction in TG levels. 

[181] 
 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

88 

 

- SU.FOL.OM3 Trial: 
- Prior MI or ischemic 

stroke (1-12 months) 
- (2501) 

- 0.6g/day EPA and DHA 
vs. placebo 

- 4.2 years 

- No significant reduction in CV death, 
non-fatal MI, or stroke (HR=1.08). 

- Secondary prevention of coronary-
related events may not be 
significantly reduced by n-3 PUFAs. 

[406] 
 

- R&P Trial: 
- CV risk factors, 
- clinical 

atherosclerosis,  
- no previous MI 
- (12,513) 

- 1g/day EPA and DHA vs. 
placebo 

- 5 years 

- No significant reduction in CV death 
or hospital admission (HR=0.97). 

- N-3 PUFAs may not be beneficial 
for the primary prevention of CV 
events or death in patients with 
multiple CV risk factors. 

[407] 
 

- ASCEND Trial: 
- Diabetes 
- No CVD or 

atherosclerosis 
- (15,480) 

- 1g/day n-3 PUFAs 
(460mg EPA and 380mg 
DHA) vs. placebo 

- 7.4 years 

- No significant difference between first 
serious CV event rates (RR=0.97). 

- N-3 PUFA supplementation may 
be ineffective as a primary 
prevention strategy of CV events in 
patients with type 2 diabetes 
mellitus. 

[408] 
 

- VITAL Trial: 
- No CV event or 

cancer history 
- (25,871) 

- OMACOR 1g/day (0.46g 
EPA and 0.38g DHA) vs. 
placebo 

- 5.3 years 

- No significant difference in major CV 
events (HR=0.92). 

- N-3 supplementation may not 
provide any benefit in the primary 
prevention of major CV events 
regardless of a patient's CVD risk. 

[409] 
 

Abbreviations (Table 1 and 2): 

ACS, Acute coronary syndrome; BMI, Body mass index; CAD, Coronary artery disease; CETP, Plasma cholesterol ester transfer 
protein; CRP, C-reactive protein; CV, Cardiovascular; CVD, Cardiovascular disease; G-CSF, Granulocyte-colony stimulating factor; 
GM-CSF, Granulocyte monocyte-colony stimulating factor; HR, Hazard ratio; ICAM-1, Intercellular adhesion molecule-1; IDL-P, 
Intermediate density lipoprotein; IHD, Ischemia heart disease; IL, Interleukin; LDL-C, Low density lipoprotein cholesterol; Lp-PLA2, 
Lipoprotein phospholipase A2; LV, Left ventricular; MCP-1, Monocyte chemoattractant protein-1; MI, Myocardial infarction; MMP, 
Matrix metalloproteinase; NO, Nitric oxide; NYHA, New York Heart Association; OA, Osteoarthritis; OR, Odds ratio; P-OM3, 
Prescription omega-3-acid ethyl esters; PCI, Percutaneous coronary intervention; PL, Phospholipid; PTX3, Pentraxin-3; PUFA, 
Polyunsaturated fatty acid; RA, Rheumatoid arthritis; RLP-TG, Remnant lipoprotein triglycerides; RR, Relative risk; SAA, Serum 
amyloid A; sdLDL, Small dense low density lipoprotein; T2DM, Type 2 diabetes mellitus; TC, Total cholesterol; TG, Triglycerides; 
TIMP, Tissue inhibitor of MMP; TNF�, Tumor necrosis factor �; VCAM-1, Vascular cell adhesion molecule-1; VLDL-P, Very low 
density lipoprotein.  
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Table 3: Examples for the immunomodulatory effects mediated by n-3 PUFA and its metabolites 
 

Atherosclerosis and Thrombosis  
N-3 PUFA / 
Metabolite Experimental Model Effects on Different Immune 

Components Conclusion Reference 

EPA or DHA 
 

- Human platelet-rich plasma  
- EPA (IC50 = 5.9 µM) or DHA (IC50 

= 2.2 µM) added for 90 seconds  
- Aggregation stimulated using 

stable TxA2 mimetic, U46619, 
fibrinogen and CaCl2. 

- DHA and EPA antagonized TxA2 and 
PGH2 receptor which decreased platelet 
aggregation. 

- DHA was found to be more potent than 
EPA in blocking platelet aggregation.  

- EPA and DHA are capable of 
directly inhibiting agonist 
interaction with Tx receptor and 
thus inhibit platelet activation 
which may serve as a 
mechanism for their anti- 
thrombotic effects.  

[410] 

DHA - HSaVECs or HUVECs 
- Pre-treatment with DHA (10 µM) 

for 24 to 96h 
- Challenging with the cytokines IL-

1α, IL-1β, IL-10, TNF-α, IL-4 or 
bacterial LPS for an additional 0 
to 24h.  

- DHA inhibited endothelial activation.  
- DHA decreased cytokine-induced 

expression of endothelial and leukocyte 
adhesion molecules VCAM-1, E-selectin 
and ICAM-1. 

- DHA decreased secretion of the 
inflammatory mediators IL-6 and IL-8. 

- DHA reduced the adhesion of human 
monocytes to cytokine-stimulated 
endothelial cells. 

- The anti-inflammatory effects of 
DHA may contribute to its ability 
to inhibit the development as 
well as the progression of 
atherosclerosis.  
 

[212] 
 

EPA and DHA - Monocytes obtained from healthy 
non-smoking adults  

- Pretreated with a mixture of EPA 
and DHA at a final ratio 3 EPA : 2 
DHA (39µM EPA:  26µM DHA)   

- Challenged with IFN-γ for 48h. 

- Mixture inhibited MHC II and ICAM-1. 
- Mixture reduced CD4 cell activation. 

- N-3 PUFAs are efficient in 
protection against monocyte 
activation. 

[411] 

EPA - Human monocytic THP-1 cells  
- Pre-incubated with EPA (60 µM) 
- Stimulated with LPS for various 

time periods (6, 12 and 24h) 

- EPA attenuated TNF-α production by 
inhibiting NF-κB activation and binding to 
DNA. 

- EPA might be used for the 
prevention and alleviation of 
atherosclerosis as well as the 
associated-thrombotic 
episodes. 

[218] 
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Menhaden fish 
oil (n-3 PUFA: 

16% EPA, 
19% EPA) 

- WT and PPARα-null mice 
(A) Chronic treatment: Unrestricted 

access to menhaden fish oil diet 
for 15 days 

(B) Acute treatment: Two oral 
doses of fish oil (0.01 ml/g) at 0 
and 12h in a 24h study. 

- Fish oil stimulated the secretion of the 
anti-inflammatory and the anti-
atherogenic hormone adiponectin by two 
folds.  

- This effect is PPARγ-dependent and 
PPARα-independent. 

N-3 PUFAs possess anti-
inflammatory and 
antiatherogenic properties 
which could be mediated by 
stimulation of adiponectin 
secretion. 

[412] 

EPA (A) In vivo experiment: 
- ApoE−/− or LDL-R−/− mice  
- Fed on western-type diet ± 5% 

EPA (w/w) (5.35 kcal/g) for 13 
weeks 
 
(B) In vitro experiment: 

- HUVEC, human monocytic THP-1 
cells, and murine macrophage 
RAW264.7 cells 

- Pre-treated with EPA (1 µM) for 
48h  

- Stimulated with TNF-α (10 ng/ml) 
for 24h by LPS (10 ng/mL) for 4h. 

- EPA suppressed the development of 
atherosclerotic lesions. 

- EPA stabilized atherosclerotic plaque. 
- EPA decreased macrophage infiltration in 

conjunction with increased collagen. 
- EPA abolished MMP production in 

macrophage like cells.  
- EPA upregulated PPARα and thus 

inhibited NF-kB activation. 
- EPA attenuated the up-regulation of 

VCAM-1, ICAM-1 and MCP-1 in HUVECs 
as well as the expression of MMP-2 and 
MMP-9 in macrophage-like cells induced 
by TNF-α. 

- The anti-inflammatory effects of 
EPA accounts for its ability to 
prevent the progression and the 
destabilization of atherosclerotic 
lesions. 

[201] 

ALA 
(7.3% w/w) 

- WT mice  
- Fed a 0.21% (w/w) cholesterol 

diet containing either a high 
(7.3%) or low (0.03%) ALA 
concentration for 2 weeks 

- Subjected to photochemical injury 
for the induction of thrombosis. 

- ALA decreased impaired arterial 
thrombus formation, platelet activation, 
and NF-κB activity in mice.  

 

- ALA represents an attractive 
nutritional intervention with 
direct antithrombotic effects in 
cardiovascular disorders. 

[413] 
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EPA - HUVEC  
- Treated with EPA (3, 10 or 30 

µM) in addition to PA (100 µM) for 
1 day 

- EPA suppressed the PA-induced 
upregulation of ICAM-1, MCP-1, and IL-6. 

- EPA inhibited NF-kB pro-inflammatory 
pathway. 

- EPA attenuates saturated fatty 
acid-induced macrophage 
cytokine production as well as 
vascular endothelial dysfunction 
which explain the anti-
atherogenic action of EPA in the 
clinical setting. 

[414] 

RvE1 
 

- Female ApoE3 Leiden transgenic 
mice  

- Fed an atherogenic diet for 9 
weeks  

- Treated with either low 
(1mg/kg/day) or high 
(5mg/kg/day) RvE1 supplements. 

- RvE1reduced atherosclerotic lesions.  
- RvE1 did not affect plasma E-selectin, 

VCAM-1 or MCP-1 levels. 
- RvE1 reduced plasma EPHX4 levels.  
- RvE1 down-regulated the local 

expression of pro-atherogenic genes in 
the aorta.  

RvE1 inactivated IFN-γ and TNF-α 
signalling pathways in the aorta. 

- RvE1 has local anti-
inflammatory effects within the 
aorta and thus attenuates 
atherogenesis without affecting 
plasma lipids. 

 

[378] 

- EPA alone 
- DHA alone 
- EPA+DHA  

(A) In vivo:  
- ApoE -/- mice  
- Fed western diet supplemented 

with either 
1.  EPA (2.5%, w/w),  
2. Low-dose EPA + DHA 

(2.5%, w/w), or  
3. High-dose EPA + DHA (5%, 

w/w) for 20 weeks. 
(B) In Vitro:  

- RAW264.7 cells  
- Pretreated with EPA (3 µM) or 

DHA (3 µM) or their combination 
for 48h 

- Challenged by LPS (10 ng/mL) for 
4h. 

- EPA and DHA additively: 
1. Stabilized atherosclerotic plaque  
2. Decreased lipid accumulation 
3. Attenuated the expression of 

inflammatory molecules  
4. Inhibited macrophage activation 
5. Suppressed LPS-induced TLR4 

expression in lipid rafts on 
RAW264.7 cells 

- Decreased LPS-induced elevation of 
MCP1, TNFα and MMP9.  

- DHA has additional anti-
atherosclerotic effects when 
combined with EPA.  

- DHA attenuates pro-
inflammatory activation of 
macrophages by inhibiting TLR4 
accumulation into lipid rafts. 

[242] 

Myocardial Infarction  
RvD1 - WT mice  - RvD1 reduced neutrophil density in the - RvD1 exerts potent pro- [388] 
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- Subjected to the surgical ligation 
of LAD to induce MI  

- Injected with either Lipo-RvD1 (3 
µg/kg/day) or free RvD1 (3 
µg/kg/day) 3h post-MI and 
monitored for 5 days. 

spleen and discontinued neutrophil 
recruitment in LV post-MI. 

- RvD1 stimulated macrophage clearance 
from infarcted area and promoted early 
resolution of inflammation post-MI. 

- RvD1 reduced collagen deposition.  
- RvD1 liposomal formulation offered 

stability for long-term inflammation 
resolving effect.  

resolving actions in MI-mediated 
injury and thereby limited the 
progression towards LV 
dysfunction post-MI. 

Ischemia -Reperfusion Injury  
RvE1 (A) In vivo:  

- Sprague-Dawley rats  
- Underwent 30 min of ischemia 

(LAD ligation) and 4h of 
reperfusion.  

- Before reperfusion, rats received 
intravenous RvE1 (0, 0.03, 0.1, or 
0.3mg/kg). 
 
(B) In vitro:  

- H9c2 cells  
- Incubated with RvE1 (0, 1, 10, 

100, or 1000 nM)  
- Subjected to 18h normoxia, 16h 

of hypoxia, or 16h of hypoxia and 
2h of reoxygenation. 

- RvE1 reduced infarct size.  
- RvE1 reduced leukocyte infiltration to the 

ischemic site. 

- RvE1 has a direct protective 
effect on cardiomyocytes against 
IR injury. 

[384] 

EPA - Pigs  
- Treated with EPA chow 

(600mg/kg/day) for 3 weeks  
- Subjected to myocardial ischemia 

by 90-min occlusion of the left 
circumflex coronary artery and 
subsequent 60-min reperfusion. 

- EPA ameliorated myocardial IR injury. 
- EPA inhibited myocardial Rho-kinase 

activity. 

- Long-term treatment with EPA 
ameliorates IR injury partly 
through Rho-kinase pathway 
inhibition. 

[415] 

RvD1 - Sprague-Dawley rats. 
- Ischemia: LAD occlusion for 40 

min. 

- RvD1 decreased neutrophil infiltration into 
infarcted region. 

- RvD1 decreased the release of pro-

- Single RvD1 dose, given 5 min 
before occlusion or 5 min after 
the onset of reperfusion, 

[387] 
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- Reperfusion for 19 days. 
- 0.1 µg RvD1 injected into the LV 

cavity 5 min before ischemia or 5 
min after the onset of reperfusion.  

inflammatory cytokines. decreases the infarct size post-
MI. 

19,20-EDP - Isolated mouse hearts perfused in 
the Langendorff mode  

- Perfused with 1 µM 19,20-EDP  
- Subjected to 30 min ischemia and 

followed by 40 min of reperfusion. 

- 19,20-EDP inhibited the activation and 
assembly of NLRP3 inflammasome with 
its downstream detrimental signals, 
caspase 1 and IL-1β under IR conditions. 

- 19,20-EDP provides protection 
against IR injury via inhibiting the 
detrimental NLRP3 
inflammasome responses. 

[82] 

Cardiac Fibrosis and Remodeling  

EPA - Neonatal rat ventricular 
cardiomyocytes  

- Pretreated with 10 µM EPA,  
- Challenged with 0.1 nM ET-1, on 

day 5 of culture for 24h 

- EPA attenuated TGF-β1 and JNK 
upregulation caused by ET-1. 

- EPA reduced ET-1 induced hypertrophy. 

- Fish oil may have beneficial 
protective effects on cardiac 
hypertrophy. 

[416] 

EPA + DHA - WT mice  
- Fed a fish oil–supplemented diet 

(12 g menhaden oil + 28 g corn 
oil per kg) for 8 weeks  

- Subjected to TAC surgery  
- Mice continually fed the fish oil–

supplemented diet and 
euthanized after 3, 7, or 28 days. 

- Fish oil inhibited TGF-β1 induced 
transformation and proliferation of cardiac 
fibroblasts and thus reduced cardiac 
fibrosis. 

 

- N-3 PUFAs prevent cardiac 
fibrosis and cardiac dysfunction 
by blocking TGF-β1 -induced 
phospho-Smad2/3 nuclear 
translocation. 

[417] 

EPA or DHA 
 

- WT mice  
- Started on diets supplemented 

with 1.9 g/Kg EPA or 1.3 g/Kg 
DHA for 2 weeks  

- Subjected to TAC surgery 
- Diets continued for an additional 6 

weeks.  

- EPA, not DHA, inhibited TGF-β1 
signalling via activation of GRP120 and 
thus ameliorated cardiac fibrosis. 

- EPA-mediated prevention of 
fibrosis via activation of GRP120 
could represent a novel therapy 
for HFpEF.  

[227] 

EPA - DS/obese rat  
- Fed with low dose (300 mg/kg) or 

high dose (1g/kg) of EPA for 4 
weeks 

- EPA increased adiponectin secretion 
which inactivated NF-kB. 

- EPA reduced cardiac fibrosis as well as 
ameliorated LV fibrosis, diastolic 
dysfunction, oxidative stress and 
inflammation without lowering blood 

- EPA may be suitable for the 
treatment of cardiac injury 
associated with metabolic 
syndrome. 

[229] 
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pressure in DS/obese rats. 
EPA - WT mice. 

- Oral doses of EPA (1g/kg) for 28 
days.  

- Subjected to MI by LAD ligation. 
- Mice treated again with EPA 

(1g/kg) once daily for 28 days 
after MI. 

- EPA attenuated fibrosis in the 
myocardium. 

- EPA decreased expression of fibrotic 
genes. 

- EPA inhibited TGFβ/Smad signalling.  

- Long-term administration of EPA 
improves the prognosis and 
attenuates chronic cardiac 
remodeling after MI by 
modulating the activation of 
proinflammatory M1 
macrophages. 

[228] 

DHA or 
RvD1 

- Cultured cardiac fibroblasts and 
peritoneal macrophages  isolated 
from WT and 12/15LOX−/− mice  

- Treated for 4, 8, 12, and 24h with: 
1. DHA (50 µM), or 
2. RvD1 (10 ng/ml)  

- RvD1 showed higher potential than DHA 
in limiting pro-inflammatory cytokines and 
chemokine in the absence of 12/15LOX. 

- RvD1 polarized macrophages towards 
resolving phenotype (M2) than DHA. 

- RvD1, but not DHA, diminished 
expression of COX‐2 in 12/15LOX−/− 
cardiac fibroblast. 

- RvD1 possess potent 
immunomodulating properties, 
even stronger that DHA, and is a 
potential candidate for 
therapeutics in inflammatory 
diseases including cardiac 
remodeling.  

[418] 

Abbreviations: 

MHC, Major histocompatibility complex; MMP, Matrix metalloproteinase; NRVC, Neonatal rat ventricular cardiomyocytes; PA, 
Palmitic acid; PGH2, Prostaglandin H2; PPAR, Peroxisome proliferator–activated receptor; PUFA, Polyunsaturated fatty acids; Rv, 
Resolvin; Smad, Suppressor of mothers against decapentaplegic; TAC, Transverse aortic constriction; TLR, Toll-like receptor; TNFα, 
Tumor necrosis factor α; TGF-β1, Transforming growth factor-β1; TxA2, Thromboxane A2; VCAM-1, Vascular cell adhesion 
molecule-1 

 

 

 

 

 

 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

95 

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Highlights 

� Excessive activation of the innate immune system may worsen adverse effects from 
ischemic injury 

� Modulating the innate immune system can limit adverse effects from ischemic injury 
� N-3 PUFAs are metabolized to bioactive lipid mediators that possess anti-inflammatory 

properties  
� Cardioprotective effects of n-3 PUFAs against ischemic injury involve 

immunomodulatory properties 
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